Nervous System Unit Review

1. Label the following diagrams

2. Matching: Nerve structure

A. Cell bodies. B. synaptic terminals. C. dendrites. D. axons

- 1. ____ carry action potentials to output terminals
- 2. ____ the cell's integration centre
- 3. _____ receive information from the environment
- 4. _____ sites where signals are transmitted to other cells
- 5. _____convert environmental information into electrical signals
- 6. ____bundled together into nerves
- 7. _____ initiate action potentials

3. Matching: Nerve functions

A. Threshold. B. action potential. C. resting potential. D. depolarization. E. re	repolarization
---	----------------

- 1. _____ always negative (around -70 mV) within a nerve cell
- 2. _____a sudden positive charge within a nerve cell
- 3. _____ minimum change in voltage required to send action potential
- 4. ____ only sodium potassium pumps working
- 5. _____ due movement of potassium out of axon
- 6. _____ opening of more voltage gated sodium channels
- 7. ____ moving depolarization of a nerve cell

4. Matching: Autonomic nervous system

A. Sympathetic system. B. parasympathetic system. C. both systems. D. neither system

- 1. ____ prepares for fight or flight responses
- 2. _____ conducts messages between the environment and central nervous system
- 3. _____ speeds up heart rate
- 4. _____ associated with rest and digest activities
- 5. _____ dilates (opens up) pupils
- 6. ____increases urine and saliva production

5. Matching: Human Brain

	A. Cerebellum. B. cerebrum. C medulla. D. brain stem							
1.	hindbrain							
2.	2 controls several autonomic functions							
3.	forebrain							
4.	receive input from all sense organs and "decides" which require attention							
5.	controls learning, emotions and autonomic nervous system							
6.	largest part of the brain							
7.	ability to problem solve							
8.	musical skills							

6. Matching: Synapses

Α.	Axon terminal.	B. dendrite.	C receptor.	D. neurotransmitter.	E. cleft	
----	----------------	--------------	-------------	----------------------	----------	--

- 1. ____ location neurotransmitters are stored
- 2. ____ location of ligand gated sodium channels
- 3. ____ location of reuptake pumps
- 4. _____ where action potential comes from
- 5. ____ gap between neurons
- 6. _____ inhibitory or excitatory
- 7. How are excitatory and inhibitory neurotransmitters different?
- 8. How are temporal and spatial summation different?
- 9. How are reflexes different than conscious thought?
- 10. How are white and grey matter different?
- 11. How are afferent and efferent nerves/pathways different?
- 12. How are depolarization and repolarization different?
- 13. How are absolute and relative refractory periods different?
- 14. How are somatic and autonomic nervous systems different?
- 15. How are the cerebellum and cerebrum different?
- 16. How are frontal and temporal lobes different?